S&A FY03 ANNUAL REVIEW MEETING # Compact infrared spectrograph **Ed Johnson** (781) 788 8777 \times 101 ejohnson@jon-optics.com ## **Project Overview** #### Project description Develop small, low-power infrared monitoring components for volatile organic compounds in industrial settings. #### Objectives - Demonstrate achievable sensitivity for miniature spectrometers - Evaluate measurement error sources for field operation - Develop improved and demonstrate improved components #### Overall goal Improve the effectiveness and reduce the cost of environmental compliance monitoring for industries of the future ### **Technical Merit** - Addresses technical need(s) of the S/C community and the S/C priorities of the IOFs - Regulatory compliance (EPA method 21) tests are awkward, timeconsuming, and costly - Current point detection (valve stems, pumps) methods underreport significant VOC leaks from other sources -- pipes, heatexchangers, and lube-oil vents - Recent plant leak imaging/spectroscopy data (TERC, 2002) suggests that less than 1% of components surveyed produced out-of-compliance VOC leaks - Rapid identification (hopefully remote, hopefully unattended) of emission sources will reduce emissions while reducing cost of compliance ### **Technical Merit** #### Contributes new information or technology to the S/C community - Mid-IR spectroscopy: sensitive and powerful tool for gas detection - New photonic components: better point- and stand-off detection - Spectral data: multiple or unknown targets, cluttered background - Image data: survey and identification of potential leak sites - Mid-IR: plume temperature, background spectral content - Need correlated Mid-IR image and spectral data - Throughput (sensitivity/specificity) + alignment for field unit ### Technical Progress and Outlook - Major progress/accomplishments to date - Defined baseline VOC plume monitor requirements - Developed model for Mid-IR spectral + temp contrast - Validated model/instrument package with field measurements - Brassboard unit: achievable alignment and throughput - Design definition for miniature imaging spectrograph # VOC plume monitor req't definition - Point sensors are awkward: can miss unexpected leak sites - Remote (stand-off) spectra: gas presence, not precise location - Multi-spectral imaging: alignment/throughput in compact field unit ### VOC plume monitor req't definition - Spectral filter bandwidth: trade-off sensitivity and specificity - Higher throughput achievable through shared optics - Signal processing helps - Alignment Throughput Stability ### Mid-IR plume contrast: temp and spectrum Band-pass filtered infrared image shows gas plume against flat, warm background ### Mid-IR plume contrast: temp and spectrum Thermal emission: gas plume can be brighter or darker than background (or invisible) depending on background spectral content and temperature ### Mid-IR plume contrast: temp and spectrum At 3.3 um wavelength, reflected sunlight dominates: reduces background clutter #### Brassboard unit: achievable alignment + throughput Waveguide micro-spectrograph integrated with IR microscope objective #### Field test: alignment/package and throughput model Brassboard unit measures CO₂ SO₂ evolution from active lava eruption # Technical Progress and Outlook #### **Future Technical Milestones/Goals** Integration of the MicroSpec with the I camera. The analyzer will mounted ab the camera lens and aligned to target the camera lens are camera. center of the camera's field-of-view. ## Technical Progress and Outlook #### Expected progress toward milestones/goals - Phase II project proposal submitted - FY03 -- complete detailed design, signal processing - FY04 -- sub-assembly tests and validation - FY05 -- integrate and test imaging spectrograph #### Possible barriers - Thoughput with shared focal plane - Boresight alignment tolerance over operating temp range - Temp and mechanical stability under field conditions # Summary - Initial study project showed IOF interest in spectral imaging - Current regulatory compliance monitoring is awkward - Leaks/spills from < 1% of sites monitored responsible for bulk of environmental, process and energy cost - Need spectral imaging to readily identify and locate leak sites - Trace VOC detection modeled over cluttered backgrounds - Model validated with brassboard spectrometer test data - Alignment and throughput are critical - Next phase will develop imaging spectrograph VOC leak monitor